lec01

lec01

Note

This is NOT the official course PHYS5340 website yet!

  • If you are student in this course, always take the lecture notes as the correct one if you find any differences between lecture notes and website contents

  • If you are just passerby, use the materials below at your own risk. Since the website is still the first version (even alpha version), there could be some typos, incorrect/inaccurate/improper statements.

Note

All materials in this website are based on the course offered at HKUST

Note

As a “casual course”, we provide only general references but not specific ones to the materials introduced

Note

All materials’ copyright in this website are reserved for the course lecturer

  • If you want to use the material somewhere, you might need to contact the lecturer first

Note

Contribution is always welcome. if you find any typo, incorrect/inaccurate/improper statements or necessary references, do not hesitate to

  • raise an issue on github repo

  • make an pull request on github repo

  • contact me directly

TODO before the lectures note, there are some content are from slides

topics

  1. quantum harmonic oscillator

  2. creation and annihilation operators

  3. Fock space

  4. real space wave functions

  5. coherent state

  6. propagator

goals

  1. QM warm-up

  2. do some Gaussian integrals

  3. change some basis

QHO

As a warm-up, consider the QHO in one dimension.

\[\begin{split} \begin{gather*} \hat{H}=\frac{\hat{p}^2}{2m}+\frac{1}{2}m\omega ^2\hat{x}^2 \\ \left[ \hat{x},\hat{p} \right] =i\hbar \\ \end{gather*} \end{split}\]

in position basis, \(\hat{p}=-i\hbar \partial _x\). Check

\[\begin{split} \begin{align*} \left[ \hat{x},\hat{p} \right] f\left( x \right) &=-i\hbar x\partial _xf+i\hbar \partial _x\left( xf \right) \\ &=-i\hbar x\partial _xf+i\hbar f+i\hbar x\partial _xf\\ &=i\hbar f \end{align*} \end{split}\]

In position basis, the eigenvalues satisfy

\[ -\frac{\hbar ^2}{2m}\partial _{x}^{2}\phi \left( x \right) +\frac{1}{2}m\omega ^2x^2\phi \left( x \right) =E\phi \left( x \right) \]

We can, however, solve it algebraically (without going to the position basis). First, let’s adopt some dimensionless coordinates. We know \([\hat{H}]=[\hbar\omega]\); write

\[ \hat{H}=\frac{\hbar \omega}{2}\left( \frac{m\omega}{\hbar}\hat{x}^2+\frac{1}{m\hbar \omega}\hat{p}^2 \right) \]

Define

\[ \hat{X}=\sqrt{\frac{m\omega}{\hbar}}\hat{x},\quad \hat{P}=\frac{1}{\sqrt{m\hbar \omega}}\hat{p} \]

Then

\[ \left[ \hat{X},\hat{P} \right] =\sqrt{\frac{m\omega}{\hbar}}\frac{1}{\sqrt{m\hbar \omega}}\left[ \hat{x},\hat{p} \right] =i \]

Let’s now define

\[ \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}\left( \hat{X}-i\hat{P} \right) ,\quad \hat{a}=\frac{1}{\sqrt{2}}\left( \hat{X}+i\hat{P} \right) \]

which gives

\[\begin{split} \begin{gather*} \hat{a}^{\dagger}\hat{a}=\frac{1}{2}\left( \hat{X}-i\hat{P} \right) \left( \hat{X}+i\hat{P} \right) =\frac{1}{2}\left( \hat{X}^2+\hat{P}^2+i\left[ \hat{X},\hat{P} \right] \right) \\ \hat{H}=\frac{\hbar \omega}{2}\left( \hat{X}^2+\hat{P}^2 \right) =\hbar \omega \left( \hat{a}^{\dagger}\hat{a}+\frac{1}{2} \right) \end{gather*} \end{split}\]

This gives a convenient way to construct the spectrum. First, check

\[ \left[ \hat{a},\hat{a}^{\dagger} \right] =\frac{1}{2}\left[ \hat{X}+i\hat{P},\hat{X}-i\hat{P} \right] =\frac{1}{2}i\left[ \hat{P},\hat{X} \right] -\frac{1}{2}i\left[ \hat{X},\hat{P} \right] =1 \]

So, if \(\hat{H}|E\rangle =E|E\rangle\), we have

\[\begin{split} \begin{align*} \hat{H}\left( \hat{a}^{\dagger}|E\rangle \right) &=\hbar \omega \left( \hat{a}^{\dagger}\hat{a}+\frac{1}{2} \right) \hat{a}^{\dagger}|E\rangle \\ &=\hbar \omega \left( \hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}+\frac{1}{2}\hat{a}^{\dagger} \right) |E\rangle \\ &=\hbar \omega \left( \hat{a}^{\dagger 2}\hat{a}+\hat{a}^{\dagger}+\frac{1}{2}\hat{a}^{\dagger} \right) |E\rangle \\ &=\hat{a}^{\dagger}\left( \hat{H}+\hbar \omega \right) |E\rangle \\ &=\hat{a}^{\dagger}\left( E+\hbar \omega \right) |E\rangle \\ &=\left( E+\hbar \omega \right) \left( \hat{a}^{\dagger}|E\rangle \right) \end{align*} \end{split}\]

which means \(\hat{a}^{\dagger}|E\rangle\) is another eigenstate with energy \(E+\hbar\omega\). This relates the different eigenstates. We just need to find the ground state. Since

\[ \langle \phi |\hat{a}^{\dagger}\hat{a}|\phi \rangle =\left\| \hat{a}|\phi \rangle \right\| ^2\ge 0,\quad \forall |\phi \rangle \]

If \(\hat{a}\) has a null vector, then it will be the ground state. Let’s just posit such a state exist, i.e.,

\[ \exists |0\rangle \quad \mathrm{s}.\mathrm{t}.\quad \hat{a}|0\rangle =0\]

Then the eigen spectrum is given by

\[ \left\{ |n\rangle ;E_n=\hbar \omega \left( n+\frac{1}{2} \right) \right\} \]

We can also find the matrix elements of \(\hat{a},\hat{a}\) in this eigen basis. Recall

\[ |n+1\rangle =\mathcal{N} \hat{a}^{\dagger}|n\rangle \]

where \(\mathcal{N}\in\mathbb{R}^+\) is the normalization factor. Also, from the preceding discussion we have

\[ \hat{a}^{\dagger}\hat{a}|n\rangle =n|n\rangle \]

The normalization is then

\[\begin{split} \begin{align*} 1=\langle n+1|n+1\rangle &=\mathcal{N} ^2\langle n|\hat{a}\hat{a}^{\dagger}|n\rangle \\ &=\mathcal{N} ^2\langle n|\left( \hat{a}^{\dagger}\hat{a}+1 \right) |n\rangle \\ &=\left( n+1 \right) \mathcal{N} ^2 \end{align*} \end{split}\]
\[ \hat{a}^{\dagger}|n\rangle =\sqrt{n+1}|n+1\rangle \]

similar argument gives \(\hat{a}|n\rangle =\sqrt{n}|n-1\rangle\). In a matrix picture.

\[\begin{split} \hat{a}^\dagger=\left[ \begin{matrix} 0& & & & \\ 1& 0& & & \\ & \sqrt{2}& 0& & \\ & & \sqrt{3}& 0& \\ & & & \ddots& \ddots\\ \end{matrix} \right] ,\quad \hat{a}=\left[ \begin{matrix} 0& 1& & & \\ & 0& \sqrt{2}& & \\ & & 0& \sqrt{3}& \\ & & & 0& \ddots\\ & & & & \ddots\\ \end{matrix} \right] \end{split}\]

This is a “number” basis. We call it the Fock space. It’s separable (but infinite dimensional). We are only left with showing \(\hat{a}|0\rangle =0\) {TODO-UNKNOWN-WORD} solution. To do so, let’s go back to the position basis. Recall

\[ \hat{a}=\frac{1}{\sqrt{2}}\left( \hat{X}+i\hat{P} \right) =\frac{1}{\sqrt{2}}\left( X+i\left( -i\frac{\partial}{\partial X} \right) \right) =\frac{1}{\sqrt{2}}\left( X+\frac{\partial}{\partial X} \right) \]
\[ \hat{a}|\phi _0\rangle =0 \]
\[ \left( X+\frac{\partial}{\partial X} \right) \phi _0\left( X \right) =0 \]
\[ \int{\frac{d\phi _0\left( X \right)}{\phi _0\left( X \right)}}=-\int{XdX}\]
\[ \phi _0\left( X \right) =\mathcal{N} e^{-X^2/2}\]

Which is a Gaussian. Recall \(X=\sqrt{\frac{m\omega}{\hbar}}x\),

\[ \phi _0\left( x \right) =\mathcal{N} e^{-m\omega x^2/\left( 2\hbar \right)} \]

To get the normalization,

\[\begin{split} \begin{align*} 1&=\int_{-\infty}^{\infty}{\left| \phi _0\left( x \right) \right|^2 dx}=\mathcal{N} ^2\int_{-\infty}^{\infty}{e^{-m\omega x^2/\hbar}dx}\\ &=\mathcal{N} ^2\sqrt{\frac{\hbar}{2m\omega}}\int_{-\infty}^{\infty}{e^{-m\omega x^2/\hbar}\exp \left( -\left( \sqrt{\frac{\hbar}{2m\omega}}x \right) ^2/2 \right) d\left( \sqrt{\frac{\hbar}{2m\omega}}x \right)}\\ &=\mathcal{N} ^2\sqrt{\frac{\hbar}{2m\omega}}\sqrt{2\pi} \end{align*} \end{split}\]
\[ \mathcal{N} =\left( \frac{m\omega}{\pi \hbar} \right) ^{1/4} \]
\[ \phi _0\left( x \right) =\left( \frac{m\omega}{\pi \hbar} \right) ^{1/4}e^{-m\omega x^2/\left( 2\hbar \right)} \]

Side note: Gaussian integration

\[ \int_{-\infty}^{\infty}{e^{-ax^2/2}dx}=\sqrt{\frac{2\pi}{a}},\quad a>0 \]

A standard discussion will next introduce the real-space wave function of the excited states through the Hermite polynomial. Let’s try to avoid that!

coherent state

We have seen that the creation and annihilation operators provides a simple way to analyze the QHO. Let’s now take these as the “coordinates” for our problem. Recall position basis \(\hat{x}|x\rangle =x|x\rangle\). Similarly, we consider the eigenstates of the form

\[ \hat{a}|\alpha \rangle =\alpha |\alpha \rangle ;\quad \alpha \in \mathbb{C} \]

E.g., The ground state \(\hat{a}|0\rangle =0|0\rangle =0\). To solve for the eigenstate, write

\[ |\alpha \rangle =\sum_{n=0}{C_n\left( \alpha \right) |n\rangle}\]

Then,

\[\begin{split} \begin{align*} \hat{a}|\alpha \rangle &=\sum_{n=0}{C_n\left( \alpha \right) \hat{a}|n\rangle}\\ &=\sum_{n=0}{C_n\left( \alpha \right) \sqrt{n}|n-1\rangle}\\ &=\sum_{n=0}{C_{n+1}\left( \alpha \right) \sqrt{n+1}|n\rangle}\\ \end{align*} \end{split}\]

versus

\[ \alpha |\alpha \rangle =\sum_{n=0}{C_n\left( \alpha \right) \alpha |n\rangle}\]

we conclude

\[ C_{n+1}\left( \alpha \right) =\frac{\alpha C_n\left( \alpha \right)}{\sqrt{n+1}}=\frac{\alpha ^2C_{n-1}\left( \alpha \right)}{\sqrt{\left( n+1 \right) n}}=\cdots =\frac{\alpha ^{n+1}C_0\left( \alpha \right)}{\sqrt{\left( n+1 \right) !}} \]

Note: \(|\alpha\rangle\) is a superposition of \(\{|n\rangle\}\). It’s not an energy eigenstate (unless \(\alpha=0\)).

We have

\[ |\alpha \rangle =C_0\left( \alpha \right) \sum_{n=0}{\frac{\alpha ^n}{\sqrt{n!}}|n\rangle}\]

Normalization:

\[\begin{split} \begin{align*} 1&=\langle \alpha |\alpha \rangle =\left| C_0\left( \alpha \right) \right|^2\sum_{m,n=0}{\frac{\left( \alpha ^* \right) ^m\alpha ^n}{\sqrt{m!}\sqrt{n!}}\langle m|n\rangle}\\ &=\left| C_0\left( \alpha \right) \right|^2\sum_{m=0}{\frac{\left| \alpha \right|^{2m}}{m!}}\\ &=\left| C_0\left( \alpha \right) \right|^2e^{\left| \alpha \right|^2} \end{align*} \end{split}\]
\[ C_0\left( \alpha \right) =e^{-\left| \alpha \right|^2/2}\]
\[ |\alpha \rangle =e^{-\left| \alpha \right|^2/2}\sum_{n=0}{\frac{\alpha ^n}{\sqrt{n!}}|n\rangle}\]

This looks almost like the exponential! Recall

\[ |n\rangle =\frac{\hat{a}^{\dagger}}{\sqrt{n}}|n-1\rangle =\frac{\hat{a}^{\dagger 2}}{\sqrt{n\left( n-1 \right)}}|n-2\rangle =\cdots =\frac{\hat{a}^{\dagger n}}{\sqrt{n!}}|0\rangle \]

So,

\[\begin{split} \begin{align*} |\alpha \rangle &=e^{-\left| \alpha \right|^2/2}\sum_{n=0}{\frac{\alpha ^n\hat{a}^{\dagger n}}{\sqrt{n!}\sqrt{n!}}|0\rangle}\\ &=e^{-\left| \alpha \right|^2/2}e^{\alpha \hat{a}^{\dagger}}|0\rangle \end{align*} \end{split}\]